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A

CZosed-fow and finite-eZement solutions are presented for the

thernoeZatic behavior of Zaninated composite shelZ. The materiaZ

of each layer is assumed to be the woelaticalZy orthotmpic and bi-

moduZar, i.e., having different properties depending upon whether

the fiber-direction normaZ strain is tensiZe or compressive. The

formuatione are based on the thezoeastic gener aZixation of Dong

and Tao'e zaminated shell theory, which includee thicknese shear

deforvations. The finite element used here ha. five degree. of

freedom per node (three displacements and two bending slope.).

INerical resulte are presented for deflection. and the positions

of the neutral surfaces associated with bending aZong both coordi-

nate directions. The olosed-fozm.and finite-eZement results are

found to be in good agreement.

INTRODUCTION

As the field of composite-material mechanics becomes more highly developed,

increasing attention is being given to the development of more realistic r

models of actual material behavior and to the application of these models to

thermostructural analysis of composite-material structural elements such as

plates and shells. Certain fiber-reinforced composite materials, especially
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those with very soft matrices, exhibit the interesting phenomenon of having

quite different elastic properties when loaded along the fiber direction in

tension as contrasted to compression. This was demonstrated for cord-rubber

composites by Clark [1] and Patel et al. [2]. The first attempt to formulate

a theory of elastic behavior of such materials was due to Ambartsumyan [3],

and a comprehensive theory consistent with experimental results was introduced

in (4] and further discussed in (5].

Most of the thermoelastic analyses of bimodulus-material structural

elements [6-12] have been limited to isotropic bimodulus materials. However,

in a recently developed theory of micromechanics of fiber-reinforced materials

with soft matrices £13), it was shown that the thermal-expansion coefficients,

as well as the elastic properties, should depend upon the sign of the fiber-

direction strain. Unfortunately, there does not appear to be any appropriate

experimental data available to date to confirm this conclusion and to provide

quantitative values for the thermal-expansion coefficients. To the best of

the knowledge of the current investigators, the only analysis to provide for

the bimodular effect on thermal expansion is a very recent thermoelastic

analysis of thick laminated plates [14].

There have been a few thermoelastic analyses of shells laminated of

ordinary composite materials. Stavsky and Smolash [15] considered thin,

laminated, orthotropic shells using Love's first-approximation shell theory,

and Pao [16) treated similar shells using Flugge's higher-order thin-shell

theory. Recently, Padovan and Lestingi [17] analyzed heated anisotropic

shells including thickness-shear deformation.

A number of analyses of various kinds of bimodulus shells have appeared

in the literature; ten of them were reviewed in [18]. However, in every
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instance they treated only thin shells subjected to mechanical loading only.

The present analysis is believed to be the first analysis of bimodulus

shells to include either thermal loading or thickness-shear deformation.

The theory used is a generalized first-approximation thermoelastic shell

theory which can be reduced by means of tracer coefficients to various

simpler theories.

GOVERNING EQUATIONS

Let x and y denote the axial and circumferential position coordinates

measured on the shell middle surface, and z the outward normal position

coordinate (see Figure 1).

The displacement field at an arbitrary location (x,y,z) is given by

U(x,y,z) = u(x,y) + Z x(X,y)

V(x,y,z) M v(x,y) + zoy(X y) (1)

W(x,y,z) M w(x,y)

Here, u,v,w are the middle-surface displacements, and a and Oy are the

bending slopes.

The strain-displacement relations for small deflections can be written

as
V0

- Ci + zKi (1-1,2,4,5,6) (2)

Here, ei are the engineering-strain components at an arbitrary location

(x,y,z), co are the engineering-strain components on the middle surface

(x,y,O), and Ki are the curvature changes. The notation of classical com-

posite-material mechanics is used, with I and 2 denoting normal action in

7.
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directions x and y, respectively., and 6 denoting shear action with respect

to xy axes. Now

0 + w. (C /R)v co  +w,

C4 y y 1  5 = x(3)

K1  xx K2 = y,y K 6  0 x,y+ 0y,x

K4 K5 = 0 + (C2/2R)(v, x -u,)

Here, R is the radius of the middle-surface, the Ci are shell-theory tracers

to be discussed later, and ( ),x a( )/ax.

Considering the shell to consist of either a single orthotropic layer

or to be a cross-ply laminate (one having all layers oriented at either 00

or 900 with respect to the cylinder axis), the thermoelastic version of

generalized Hooke's law may be written as follows for each layer:

a, QIikz Q12kt 0 0 0 "1 - lk tT

a2  Q12k t Q22kt 0 0 0 2 " U2k T .

40 0 44kz 0 0 (4)

a5  0sk 0ES

a6  0 0 0 0 Q 96L Q66ktjI

Here, a, are the stress components, QijkL are the plane-stress-reduced
stiffnesses, a are the thermal expansion coefficients, and T is the

.

. .temperature measured from the strain-free temperature. Subscript k=l for

fiber-direction tension and 2 for compression, and subscript t denotes the

layer number.

The stress resultants and stress couples are defined in the customary

,,4.' "
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way for a first-approximation shell theory as

h/2

1' - (1,z)ai dz (5)

-h/2

where h total laminate thickness. Similarly, thermoelastic stress resul-

tants and stress couples are defined as

h/2
PN4,MI) 3 J (1,z)Eikt dz (6)

-h/2

where

Ei1 = Qijkjkt (no sum on kt) (7)

Since thickness-shear deformation is included, the shear stress re-

sultants are introduced

h/2

(QzQz) j/ (a4,a5)dz (8)
-h/2

Substituting Equations (4) and (6) into Equations (5) and (8), one

obtains the following shell constitutive relations

T!
-N + NT A11 A12  0 0 0 81 B12 0

N2 + N TA 12 A22  0 0 0 612 B22  0 CO

N6  0 0 A66  0 0 0 0 B66 CO

0 0 0 S1  0 0 0 0

Q1 0 0 0 0 S55  0 0 0 C5
TNJ + 8N 11 B12 0 0 0 D1 012 0 K1

+ M 12 822 0 0 0 012 022 0 K2

M6  0 0 866 0 0 0 0 066 K6

71 1.
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Here, Ai a inplane stiffness, B1j - inplane-bending coupling stiffness,

Ot* a bending stiffness, Sj- thickness shear stiffness, defined by

h/2(AI3.B1 I.D1 J) a J (1,z~z2)Q1 j dz (i,j-1,2,51

-hi2 (10)

h/2

Sj -K2 Qij dz (itj-4,5)
-h/2

(Derivations of A1j, Stj, Dtj, NT, and NT are carried out in detail for a

laminated bimodulus shell in Appendix A.)

The shell equilibrium equations, in the absence of body forces and

body moments, can be written as

Ni' +N 9Y- (C /R)M 6Ya0N1,X N6,y (2/2)6,y-0

N6,X + N2,y + (CI/R)Q2 + (C2/2R)M ,x a 0
6,x+ -2 1 (N 2 /R)(1

1 zx + M6,y Q1 M 6,X + M2,y Q2

where P is the normal pressure.

If the shell-theory tracer C1 is set equal to unity and C2 set equal to

zero, the theory presented here can be considered to be the thermoelastic

version of the shear-deformation shell theory of laminated, orthotropic,

circular cylindrical shells presented by Dong and Tso [19]. This theory is

'A-! the shear-deformable, laminated, orthotropic version of the well-known Love

first-approximation shell theory [20], as modified by Reissner [21]; see

also chap. 2 of (22].

k ''H
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If the shell-theory tracers are set equal to other values as specified

in Table 1,* the theory represents the shear-deformable, laminated orthotropic

version of the Sanders "best" first-approximation theory [23). Loo's approxi-

mate theory (24]. Morley's shallow-shell theory [25], and Donnell's very-

shallow-shell theory (26). It is interesting to note that when generalized

to include shear deformation, one cannot distinguish between Love's first-

approximation theory and Loo's theory and also between Morley's and Donnell's

shallow-shell theories.

Substituting Equations (3) and (9) into Equations (11), we obtain the

following operator equation

(L](6) x{f1 (12)

where
(6 u,v~w.8,B ,B

Now [L] is the symmnetric matrix of the following differential operators:

LI Aj1dx + (A66 - C26 4± D5

112 2

113 -(A, 2/R)dx L1 = B11d x + (866- ~2 D66)d y

LI (Bl2+ B66 2D66)d dy

L22 -(Ar 66+ C28 66 + dD6) + A -I4

1 *(R 1 A22 ;I4 L24* (B 1 2 +B8 6 6 + " 2 O 6 6 )ddk 23 Ay CS1 ~d 2 xy (3

2 2 2

L~ 06 2 6 JX B2y33 *-S 55d~ - 4 + (A22/R)

L34~ (R B812-S55)d L 35 *(R- 822 -S44)d
Ix y

IL ;A
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L ' 011d2 + 066d - s5s L 45 (D,2+ D66 )d dy

Lss D6 6d 2 + D22d
2 - S44 ; i C/R ; dx a a( )lax, etc.

Also the components of the generalized thermal-force vector {f} are:
f, a NT, ; f2  NT f P - (NT/R)

1x 232,y 2

f a MT ; f MT (14)

I ,x 2,y

In view of the assumed linearity of the displacements with z, it is

consistent to assume that the temperature distribution is also linear with z:

T(x,y,z) a To(x,y) + zT(xy)(15)

CRITERIA FOR HOMOGENEITY ALONG MIDDLE SURFACE

In deriving Equations (12), we tacitly assumed that the laminate stiff-

nesses (Aij,BijD ijSij) are all independent of coordinates (x,y) on the

middle surface. However, in view of the bimodulus nature of the materials

comprising the laminate, these stiffnesses depend upon the fiber-direction

neutral-surface positions associated with the respective layers (i.e., Znx

for a single layer with axially oriented fibers, and znx and zny for a cross-

ply laminate).

.4 Thus, for layers having the fibers oriented axially, the associated

fiber-direction neutral-surface position is determined by
+ ZnxC! = 0

or 
n

Znx .-- - u - constant (16)

Similarly, for layers having the fibers oriented circumferentially

+2 C2 + ZnyIK2 = 0

1or

Sa/K2 V- + R w)/By constant (17)
2ny 2 y yy

,. .;);.- ,.. -.' -- .. -; -), .- - * ,,



CLOSED-FORM SOLUTION

A solution is sought which satisfies the governing operator equation,

Equation (12), the subsidiary relations, Equations (16) and (17), and the

appropriate boundary conditions.

A closed-form solution has been found for the following conditions:

Loading (sinusoidally distributed):

P=PO sincax sin sy , To = TO sin axsin $y (18)

T, f, sin ax sin By 9 a z rx/a , 0 = wy/b

Here a and b are the dimensions of the shell in the respective axial and

circumferential directions (see Fig. I).

Boundary Conditions (freely supported):

N1(O~y) - NI(a~y) z M(O~y) - Ml(a~y) a 0

w MOY) = w(a,y) = V(O.y) = v(a,y) = 0

N2(xO) = N2(X,b) = M2(XO) z M2(x,b) -0 (19)

w (x,O) =w(x,b) =u(x,O) =u(x,b) *0

B (O,y) = B (a~y) - 6(xO) = B (x,b) =0

Under these conditions, the solution to Equation (12) is of the form

u(x,y) =Ucos ax sin By

v(x,y) - V sin ax cos By

w(x,y) - W sin ax sin By (20)

B (x,y) mX cos ax sin Byx

syk(,y) - sin ax cos By

RL
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Substitution of Equations (20) into Equation (12) leads to the follow-

ing nonhomogeneous algebraic system:

[C]{A} (F{ (21)

where

a ) U,V,W,X y T (22)

{F) = (F1,F 2 ,F3,F4 ,F5}T

The quantities Fr and the coefficients C rs of the matrix (C] are not

presented here, for brevity.

For a given set =, B, Po, R, Fi and either single-layer or cross-ply

construction, one needs to solve the 5x5 matrix Equation (21) for the vector

(a) of amplitudes of the generalized displacements, subject to subsidiary

conditions (16) and (17). For bimodulus-material shells, the laminate stiff-

nesses (Aij,Bij,D i) are, in general, not constant, but depend upon x and y

through the fiber-direction neutral-surface positions (znx and z ny). How-

ever, for the present combination of loading and boundary conditions, Znx

and Zny are both constants, i.e., independent of x and y. Although it is

conceptually possible to substitute the solution functions into Equations

(16) and (17) to obtain cubic equations involving Znx and zny, it is computa-

tionally much more efficient to satisfy Equations (16) and (17) by iterating

on znx and Zny.

FINITE-ELEMENT FORMULATION

Since an exact closed-form solution to Equation (12) can be obtained

only under special conditions of geometry, edge conditions, loadings, and

lamination, it is desirable to have available a more general method. Here,

we develop a simple, mixed-type, finite-element formulation which has no

C:'

I.)::



such limitations, except for those implied in the formulation of shear-

flexible laminated shell theory.

Let the region 1 be subdivided into a finite number N of subregions:

finite elements, 'Re (e-l,2,...,N). Over each element, the generalized

displacements (u,v,w,x,B y) are interpolated according to

r 1 r 1 $ 2
u=-E.ut~ t  , v=-r.v~ t  , =r.t i

1 1 1

(23)

x E Xi~i  ' B Y i

Here,4 (o=1,2,3) is the interpolation function corresponding to the l-th

node in the element. It is noted that the inplane displacements, the

normal deflection, and the bending slopes may be approximated by different

sets of interpolation functions. Although this generality is considered

in the formulation presented here, when the element is actually programmed,

we set * '==, o3 (r=s=p) for simplicity. Noting that r, s, and p denote

the number of degrees of freedom (DOF) for each variable, the total number

of DOF per element is 2r + s + 2p.

Substituting interpolations of the form (23) for u, v, w, sx, and y

into the Galerkin integrals associated with the governing operator equation

(12), we obtain

e([L]{6- {f}){)dxdy = 0 (24)
' e

Now using integration by parts once in order to distribute the differentiation

equally among the terms in each expression, we obtain the element equation

([K]e Vie {e (25)

- I
I,
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The elements KOO (,O=l,2,. ..,5) of the element stiffness matrix andij
of the generalized force vector are listed in Appendix B.

In the present investigation, cylindrically curved rectangular elements

of the serendipity family are used, with the same interpolation for all of

the variables. The resulting stiffness matrices are 20 by 20 for the four-

node element and 40 by 40 for the eight-node element. Reduced integration

[27,28) must be used to evaluate the matrix coefficients in Appendix B.

For example, for the four-node rectangular element, the lxl Gauss rule must

be used rather than the standard 2x2 Gauss rule.

NUMERICAL RESULTS

It would be desirable to compare the results obtained by the present

analyses with those given in the literature for special cases. Unfortunately,

however, there is a dearth of solutions of cylindrical panels subjected to

sinusoidally distributed mechanical and thermal loadings. However, in a

recent closed-form and finite-element study [14] of thermally loaded plates,

good agreement was obtained with results presented by Boley and Weiner [29]

for isotropic, thin plates.

As practical examples of orthotropic bimodulus materials, the same

two unidirectional cord-rubber materials as considered in [14,18] are con-

sidered, namely, aramid-rubber and polyester-rubber. The inplane elastic

properties were obtained from experimental results of [2] using the data-

reduction procedure presented in [4]. Since the thickness-shear moduli were

not measured in [2], they were estimated as described in detail in [30].

The elastic properties are listed in Table 2.

Unfortunately, the present investigators are unaware of any experimentally

Im -... 16.
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determined values for the thermal-expansion coefficients of cord-rubber

materials. However, the micromechanics analysis of bimodular action pre-

sented in [13] suggested that the thermal-expansion coefficients (al and e2)

of these materials should also depend upon the sign of the fiber-direction

strain. Thus, in the numerical calculations presented here, the following

dimensionless relationships are used:

tc t c t ta / 0.5 ; G2 /a 2 " 1.0 ; 0i.12  0.1

Here, superscripts c and t refer to compressive and tensile fiber-direction

strains.

Table 3 shows the effect of the radius-to-thickness ratio (R/h) on

the locations of neutral surfaces and dimensionless deflections for single-

layer and two-layer cross-ply aramid-rubber cylindrical panels under sinu-

soidal mechanical loading by Sanders theory. As the radius-to-thickness

ratio is increased to infinity, the panel can be considered as a plate.

Table 3 also shows the convergence of the dimensionless deflections.

Numerical results of the influence of the aspect ratio on the dimen-

sionless deflections and neutral-surface locations for single-layer and

two-layer cross-ply, freely supported cylindrical shells constructed of

bimodulus materials and subjected to sinusoidal thermal loading (R/h - 10)

by Sanders theory are shown in Tables 4 and 5, respectively. Again, there

is a close agreement between the finite-elment and closed-form results.

Figure 2 shows the effect of radius-to-thickness ratio and aspect

ratio (a/b) on the dimensionless deflections and neutral-surface locations

1 1F for one-layer and two-layer cross-ply, freely supported aromid-rubber

cylindrical shells under sinusoidal thermal loading by Sanders theory.

41"
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Figures 3 and 4 show the influence of aspect ratio and radius-to-

thickness ratio, respectively, on the locations of neutral surfaces for

single-layer, freely supported, aramid-rubber cylindrical shells under

sinusoidal thermal loading by Sanders theory. Similar results are shown

in Figures 5 and 6 for two-layer cross-ply, freely-supported polyester-

rubber cylindrical shells under sinusoidal thermal loading. As can be

seen, there is only a slight change of neutral-surface locations for

radius-to-thickness ratios greater than 60.

CONCLUDING REMARKS

A finite-element formulation of equations governing layered anisotropic

composite shells subjected to mechanical as well as thermal loading is

presented. The element includes the effect of shear deformation and in-

volves five degree of freedom (three deflections and two rotation functions)

per node. Numerical convergence of linear and quadratic elements is shown,

and results are presented for single-layer and two-layer cylindrically curved

cross-ply panels Fubjected to sinusoidal and uniform loadings: thermal,

mechanical, and combined loadings are considered.

To check the finite-element results, a closed-form solution is developed

herein for cross-ply cylindrically curved panels subjected to sinusoidal

mechanical and/or thermal loadings. The exact solution can be obtained only

under special conditions of geometry, edge conditions, and loadings. How-

r ever, the finite-element formulation presented here does not have any limi-

tations except for those implied in the formulation of the governing equations.

The finite-element solutions are found to be in close agreement with the

closed-form solutions for 2 by 2 mesh of quadratic elements in the quarter

* shell.

L IS.r



Thus, the finite element developed here is computationally simply

compared to other cylindrical shell elements used previously in the thermal

stress analysis of cylindrical shells.

Extension of the present element to non-linear thermal stress analysis

and to thermal buckling analysis is recommended. In those cases, the

present element should result in substantial savings.
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APPENDIX A

DERIVATION OF EXPRESSIONS FOR THERMAL FORCES AND MOMES

Case I

For Case I. z 0 and z 0 with zn governing layer 1 (0 ) and z

layer 2 (90).

N ZJ (Q122 012 1222 2 22)T dz + (Q1112 u112 +Q1212 212 )T dz
xn f -/ (h/2%1 2(Q2 2 *2 2 r Qn

+ 0  (Ql121 *121 +Q 221 *221 )T dz+ f Q/111 2111+Q1 211 211)T dz (A-i)
0 ~zn

Let

(Q1122 *122 Q1222 0222) 0 0122 - (Q1112 2112+Q1212 0212) a 0112 (A-2)

(Q112 11 ' Q1221 221) 0 0121 1 (Q 111 *111 +Q1211 02l) 
' 0111 * etc.

Then,

E T
tNx - 122 To(Zn + h/2)+0 112 To(O-zny) +s 121 T0(Znx-O)

T T(h/2-z) + :22(T1/2H)(z2 -h /4)

(Ti th) (0- z 2(Ti/2h) (Z2~ 0)0 112(T/h(-ny) + 0|121 T/h(n~x-)

2 Z2

+ oa11(Tl/2h)(h /4- )]sin ex sin By

Nx  [(o122+ lll(Toh/2) + (0121 -0111) toznx + (0122- 112) Tozny

+ (0111 - 122)(Tlh/8) + (0121 -S111)(T1Z 2h)

+ (0122- o112)(T1zn /2h)]sin ex sin oy (A-3)

Similarly,

944
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N. E(22 + o2ll)(TOh12) + (021- 0211) toznx + (0222- 0212) Tozy

+ (0211-0222)(Tlh18) + (0221- o211 )(TIZI/2h) + (022a22

(T I 2h)Jsin ex sin Oy (A-4)

Now,

NT. rh 0 122 Tz dz +J Ol B 1 Tz dz+ 0,12 iTz dz+ Om 11 Tz dz

+ (8122 - 811 (Th
2/4) ( 1 1 -B 1)(T Z l/2)

+ (0122-0112) (TI ZW33h)]sin ax sin oy 
(A-5)

Similarly,

NT E01- 0222 )(Tah 2/8) +(21-si)(To Z2 /2) 4(22 2  2)( 0 ~

+ (8222 + 02il)(TIh/4 + (8221 - nx(Tz/h

+ 0a2 2 212 ) (T Iz 3/3h)Js in ax cos Oy(A6

Using the above equations in conjunction with equations (12) and (18), we

obtain the following:

x~ 122+ B111)(1' 0h12) + (012 i iii)ToZnx + 4 2.0,21z

+ (0111 - 0122)(1' 1 h/8) + (0121 -0111)(TI'znx2

+ ($122- 0112)(1'z/2h)] (A-7)
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Oi. O(B + o 1 W)(12h/2) + (0221-1211)tozx + (0222- 0l2)TOZny

+ (0211- 222)(T1h/8) + (0221 "211I(T1z'2h)

+ (0222 - 0212)(T1z 2/2h)] (A-8)

, ( -+122)(oh-/8) + (a 2 -h+11)(ToZn~/2) + (0122- 1112)

(1oZ2/ 2) + (0122 + 0111 )(tlh 2/24) + (0121- 1111)(T1z3h)

+ (0122 - 01 12 ) (T1lZ /3h)3 (A-9)

,(,2,- 0222)(10h)+ (0221 B,, 211 )z./2) +(222 o212) (loZW2)

+ (0222+ 1211)('h 2/24) + (0221 - 2 1 1 )(T1Zn/3h) +. (1222 o212)('T1z/y3h)
(A-10)

In a similar way, one can obtain the expressions for the above-mentioned

quantities for the remaining seven cases as follows:

Case II (znx>O, z n>0)

iTx -01 " a[(0122 + 1+e1)(Toh/2) + (0121" nx

+ (0111-0122) (71h/8) + (0121 " 111)(T1z2/2h)3

yy 01(0222 + 0211)(oh 2) + " )(oZnx)+l~ (0211 ((T2 Zn+211)

+ ( 211 1-0222)(1h/8) + (0221 -0211)(?1zx/2h)(

TOX 1 s(0111 01122 )(T'oh2/8) + /2)

+ (1122 + 011 1)( 1h2/24) + 121 1)(Z 3h)]

OT 01(0211. 0222)(foh/8) + (12 2 1 .1 2 1 1 )(?oZ /2)

+ (0222-0 2 11)( 1 h /24) + (o2 2 1 "1 2 1 1 )(? 1z /3h)3

I+.-0221. 2+1 ,+.

S+..
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Case III (,tn'~O, z 'y;0)

22 ~ (0121 -011(on

* (0122- 112)(0z,,,) + (11 12(Ih8

* ( 0121  (0122)( 0112)h; *

yAT 00222 + 211)(oh +(221 0211)O ony)

,)( (02 ) + (011 0222) (1'hI8)

+ (021w 211)T~z~2h) + (0222- 0212) (?1zl/2h)] (-2

AT . s( 1 -6122) (Th2/8) + (0121 * 01i)(' 0Z2 2)

+ (012 2 - 01 12 ) (To Z22) + (0122 +0 111)(11h 2/24)

+~ ~ (11 o 1 )Iz/3h) + x3)

AT + E(02 1- 0222 )('0 2/) (0122- 2 11 )Tz

022 21) (oz2/h) + ( 22 - 21 )( 1z32)J

fly/

022 (. 1 :2) (T Z2/) 4 (01 22 2-o1 1)(z/2)

- o22)CTh/8)+ (0222- 02 21 I/2h) A.1

Case~~ IV- (z () Z<0
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x i[(o I * *' is, 22) (1'h 2/8) 4.( 1 2 e 2 )?z/)(A-13 cont.)

+ o,22 + 0111)(1' 1h2/24) +(12-421 /3)

MT, y 0B(0211- - 222)(1' 0h ;8)2)

(22 8 1 )(tlh 2/24) + (2223 3h)

For neutral surface going out of plane,

Case V (z,&.5, zny(-0.5)

NTx 1 a(0121 + 0112)(o2 + (0121 - 112)(1' 1/8)J

*g 08((2i1 + 212)CI'0/2) + (0221- 0212)('l/8)J (A-14)

MT = s((12  112)C?0o/8) + (0121 + 0112) (1i/24)J

yF y B 1021 212) (Io/8) +(0221 +B 212)TI1/24)]

Case VI (znx <-O.5, zn >0.5)

ATx GUO(8 + 112)(lo/2) +(0121 Oiiz2)(1'I/8)J

nT 61(0221 8212) (1O/2) +(0221- 0212)VI'1/8)3

MTx "1(021- 112)(To/B) + (8121 + 112)(1' 1/24)J A-s

MTy 0102-022(o + (0221 + 0212)(TI124)J

Case VII (z >0.5, z 40.5)nx ny

NT * *Oi +. 0~1~2) + (.0111 0 112) (TI /8)J3

qT 0[(0211 + 212)(1'o/2) +(8211- 0212)(11/8)J A-6

MT .to, 812)(1'o/8) + (8111 + 2)(I4]

MTy 01(0211 -4



24

Case VII (',, <-OS, z ly 405

AT a E 82 £2(I'o/2) + (0121 - 0122)(Yl/8)]
Xx 1(11+x12

8E "0(0221 + 0222)('/)+(21-82(1I) (A-1 7)

ATx 1(0121 - 02)o/ + (0121 + 01iu)('I/24)]

wT - 002- B222)(l'oIS) + (0221 + 02)T 2)

For a single layer. change 8112 to 0111' 0122 to 0121' 0212 to 0211 and

022to. B221'

344
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APPENDIX B

LISTING OF COEFFICIENTS OF STIFFNESS MATRIX

AND FORCE VECTOR FOR FINITE-ELEMENT FORMULATION

The elements of the stiffness-matrix appearing in Equation (25) are:

K!1 - .A A B dD~f
1i+ 1111 66 2 ~2664 2 66 13j

ii 12 ii +( 66  4 2 66)Gxy1

i= (A1 2/R)ij ; ~ 11 4 +j ( 66 - 2 ~2 66)Hyi

K15 = 8HMY+(B -' D x
K1 B12 i 66 2 2 66',ji

22 ij 6 66 ~2 66 )Gx~
i "'66 12 6  44 1 2

Ku" (Bji i 66 24 1 ~2 66)Hxiy 12 Bi~i B

25=(E 1  CD )Hx + B Hy' - S No
2 66 1 266 ij 2213j 1 44 j

ii 45i + (A22/R2)SjjK33 = 55 ii 4411 2

K(3 S S5 Rx + (B12/R)Rxo K (3 S44Ry' + (B22/R)Ry,

T +D T +s D 1.0 ST

K55 D 66 1 j 22 ij 44 ij

The generalized-force elements appearing in Equation (25) are:

F1  (NJ + N - M dx dy

e

IF i (N2~ + N6T x .~ j)li dx dy

* ~ J (P .- N T #/R)*dxdy(-2

Fl - R (Ix+ dx dy ;F' (M~ + M # dx dy

e e

-77
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where

J - I ' , ~ dx dy (ijl2,... r)
I e .

H (" 4! 3 dx dy (i-1,2,...,r ; jl,2,...t)j 'Re I i , ,n

i JRe ICin

- 2 dx dy (i(Bl,2..... ; (,-3)

e

* J 3 dx dy (iul,2,....s ;-ij j n

T * {" *i , dx dy (i,jul,2,...,is)
'e

(9,n-O,x,Y)

and j, etc. In the special case in which 2 i all of the

1 ij'

imatrices in Equation (B-3) coincide.

t

i
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Figure 1. Shell geometry
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Figure 2. Transverse deflection vs. aspect ratio and radius-to-thickness
ratio for single-layer and two-layer cross-ply cylindrical
panels under sinusoidal thermal loading by Sanders theory
(Material: Aramid-rubber) .

~ I . .~4



29

-0.03

0.02
-0.04

Zxa aFEM Zy Zv

0.01 - CFS Zx -0.05

-0.06

0.00

-0.07

-0.01

a/b -0.5 0.75 1.0 1.25 1.5 1.75 2.0

Figure 3. Neutral-surface location vs. aspect ratio for single-layer
cylindrical shells under sinusoidal thermal loading by
Sanders theory (Material: aramid-rubber, R/hulO)
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Figure 4. Neutral-surface location vs. radius-to-thickness ratio
for single-layer cylindrical shell under sinusoidal
thermal loading by Sanders theory (Material:aramid-
rubber, a/b-1.0).
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Figure 5. Neutral-surface~location vs. aspect ratio for twvo-ayer
cross-ply(0 /90 )cylindrical shells undir sinusoidal
thermal loading by Sanders theory (Material: polyester-
rubber, R/h-10 J
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Figure 6. Neutral-surface-loc~tion vs. radius-to-thickness ratio
for two-layer(00/90') cylindrical shells under sinusoidal
thermal loading by Sanders theory (Material:polyester-
rubber, a/bul.0)
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Table 1. List of Shell-Theory Tracers and Their Values

Theory (Thin-Shell Theory Generalized C
*to Shear-Flexible Theory)12

Sanders' 1 1
Love's first approximation
and Loo's 1 0
Morley's and Donnell's 0 0

Table 2. Elastic Properties for Two Tire-Cord/Rubber, Unidirectional, Siuddulus
Composite Materials4

Aremid-Rubber Polyester-Rubber

Property and Units kal ku2 kul k=2

Longitudinal Young's modulus, SPa 3.5B 0.0120 0.617 0.0369
Al Transverse Young's modulus, SWa 0.00909 0.0120 0.00800 0.0106

Major Poisson's ratio, dimensionlessk 0.416 0.205 0.475 0.185
Longitudinal-transverse shear inodulus, GPa' 0.00370 0.00370 0.00262 0.00267
Transverse-thickness shear imodulus, GPa 0.00290 0.00499 0.00233 0.00475

k 4Fiber-directian tension is denoted by kai, and fiber-direction compression
V. bby k-2.

It is assmd that the minor Poisson's ratio is given by the reciprocal
relation.
It is assumeid that the longitudinal-thickness shear modulus is equal to this
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Table 3. Effect of the radius-to-thickness ratio (R/h) on the
locations of neutral surfaces and deflections for
single- and two-layer,cross-ply ,aramid-rubber cylindrical
panels under sinusoidal loading by the Sanderj theory
(T, - To 0, a/b -1, b/h a 10, material 1).

R/h Layers Source wx Z

R/h- I CF 0.02094 0.44205 -0.16185
_______ FE!4 0.02093 0.44205 -0.1616

(plate) 2 CF 0.01982 0.4384 -0.03418

______ _______ FEN 0.01981 0.4384 -0.03416

1 CF 0.020246 0.4408 -0.1840
100 _____ FEI4 0.020234 0.4408 -0.1838

2 CF 0.01892 0.43666 -0.036686
FEM 0.01891 0.43661 -0.03666

1 CF 0.01943 0.4396 -0.2065
50so_____ FEI4 0.01943 0.4396 -0.2063

2 CF 0.01793 0.4350 -0.03909
________ EM 0.01793 0.4350 -0.03905

1 CF 0.01900 0.4390 -0.2179
40 _______ EM 0.01899 0.4390 -0.2177

2 CF 0.01742 0.4341 -0.04027
_______ _______ FEM 0.01741 0.4341 -0.04022

1 CF 0.01663 0.4361 -0.2769
20 FE?4 0.01663 0.4361 -0.2767

2 CF 0.01478 0.4300 -0.04600
______ _______ FEM 0.01478 0.4300 -0.04593

101 CF 0.01206 0.4305 -042
S.10FEM 0.01 206 0.4305 -0.4127

2CF 0.01019 0.4221 -0.05766
_______ ________ FEM 0.01019 0.4221 -0.057S2

1 CF 0.006223 0.4200 -0.8655
EM 0.006223 0.4200 -0.8655

2CF 0.004975 0.4070 -0.09156
______ _______ FEM 0.004972 0.4070 -0.09057

WEWUx z h L /

FOaw n f
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Table 4. Neutral-surface positions and dimensionless deflections
for cylindrical panels of single-layer (00) aramid-rubber
and polyester-rubber under sinusoidal thermal loading, as
determined by two different qpthods. (ft/h x 10.0,

a1.0., 1 0 0.0, Po. 0).

Aspect w. Z Z
Ratio __________

a/b C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber

0.5 0.03016 0.03021 0.02250 0.02247 -0.07431 -0.07308

0.75 0.06767 0.06772 0.02295 0.02295 -0.07458 -0.07400

1.0 0.1190 0.1190 0.021565 0.02158 -0.06347 -0.06332

1.25 0.1821 0.1821 0.01772 0.01768 -0.05191 -0.05157

1.5 0.2545 0.2546 0.01124 0.01121 -0.04228 -0.04204

1.75 0.3331 0.3330 0.002360 0.02314 -0.03473 -0.03454

2.0 0.41505 0.4149 -0.0085675 0.08476 -0.02892 -0.02876

Polyester-Rubber

0.5 0.04083 0.04088 0.09004 0.08958 -0.2011 -0.1978

0.75 0.08952 0.08955 0.08481 0.08463 -0.1574 -0.1560

1.0 0.1527 0.1527 0.07445 0.07423 -0.1112 -0.1109

1.25 0.2263 0.2263 0.06020 0.06919 -0.07815 -0.07779

1.5 0.3060 0.3059 0.04302 0.04300 -0.05596 -0.05573

~4.1.75 0.3881 0.3880 0.02370 0.02364 -0.04104 -0.04088

$2.0 0.4695 0.4693 0.002851 0.002742 -0.03082 -0.03069

w h * x Z *z /h Z z n/
4~?1bz x nxy Z/

4M
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Table 5. Neutral-surface positions and dimensionless deflections
for cylindrical panel of two-layer (00/900) aramid-rubber
and polyester-rubber under sinusoidal thermal loading.
CR/h a10.0, ?j 1.0, To~ 0.0, Po0 )!

Aspect IZ z
Rati C.F. F.E. C.F. F.E.- CF. F.E.

Arami d-Rubber

1.0 0.1212 0.1218 0.05189 0.05335 -0.05085 -0.05133

1.25 0.1783 0.1787 0.03656 0.03763 -0.04511 -0.04644

1.5 0.2408 0.2410 0.02050 0.02084 -0.04052 -0.04209

1.75 0.3064 0.3065 0.003910 0.004119 -0.03682 -0.03694

2.0 0.3726 0.3726 -0.01397 -0.001406 -0.03387 -0.03493

Polyester-Rubber

1.0 0.1829 0.1849 0.1486 0.1510 -0.09623 -0.1006

1.25 0.23745 0.2399 0.1066 0.1100 -0.08727 -0.08823

1.5 0.2882 0.2905 0.06572 0.06857 -0.08188 -0.08287

1.75 0.33435 0.3363 0.02652 0.02813 -0.07857 -0.08074

2.0 0.37525 0.3769 0.01112 -0.011" -0.07649 -0.07866

nx1b y ny

.,sT.b
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